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SECTION I

INTRODUCTION

The bounded-wave electromagnetic-pulse (EMP) simulator makes use of

two parallel finite-width plates as the guiding structure for the simulated

EMP (figure 1). One reason for employing two parallel plates is that they

support a transverse-electromagnetic (TEM) mode. Another reason is that

over a significant portion of the region between the plates, the TEN-mode

fields provide a good approximation to the free-space, plane-wave fields.

Unfortunately, such a structure can also support higher-order transverse-

magnetic (TM) and transverse-electric (TE) modes and a continuous spectrum

(refs. 1,2,3, and 4). The TEN mode alone is not sufficient to completely

describe the total simulator field.

The properties of the TEN mode on two parallel plates have been

investigated extensively by the method of conformal mapping (refs. 5,6, and 7),

whereas the higher-order modes and the continuous spectrum have been inves-

tigated only in some limiting cases. In reference 2, integral equations

for the higher-order modes are formulated by using Green's theorem. The

integral equations are analytically solved under the condition that the

separation of the plates is much larger than their width (i.e., narrow

plates). In reference 3, alternative integral equations for the higher-

order modes are formulated by employing Laplace transforms and the Wiener-

Hopf technique, and are solved for the plates with small separation-to-width

ratios (i.e., wide plates). The integral equations derived in reference 2

are most useful for numerical treatment when the separation of the plates is

comparable to or larger than their width, whereas those derived in reference 3

are most useful when the separation of the plates is comparable to or smaller

than their width. The plate geometries discussed in this report have

separation-to-width ratios of one, two and three. The integral equations

derived in reference 2 are thus more appropriate. In this report, numerical

results for the propagation constants and field distributions will be given

for the TN modes. The TE modes, which are more highly attenuated away from

the launching region (ref. 2), will be discussed in an appendix.
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Figure 1.Schematic Picture of Bounded-Wave Simulators.
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There is not much information available regarding the continuous

spectrum of the two-parallel-plate simulator. In reference 1, an

asymptotic analysis has been given to calculate the contribution of the

continuous spectrum to the total field of two infinitely long parallel

wires, which may be considered as a limiting case of a two-parallel-plate

simulator. In this report, a preliminary asymptotic estimation of the

continuous spectrum contribution to the TM field at a fixed frequency will

be given.

To solve the integral equations derived in reference 2, one first

transforms the integral equations into the Fredholm integral equations of

the second kind by using Carleman's formula for singular integral equations

(ref. 8). The resulting integral equations are transformed further into

matrix equations which can be solved numerically by expanding the unknown

functions in terms of Chebyshev polynomials. From the numerical solutions

of the matrix equations, the propagation constants and field distributions

of the higher-order modes as well as the properties of the continuous

spectrum can be obtained by some straightforward calculations.

It should be mentioned that although the results in this report are

obtained for the infinitely long plates, they can be directly applied to the

real simulators where the lengths are finite.

!5
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SECTION II

INTEGRAL EQUATION FORMULATION

Two infinitely long, perfectly conducting, parallel plates of finite

width are shown in figure 2. The width of each plate is 2w and the distance

separating the plates is 2h. A coordinate system is introduced such that

the z-axis coincides with the axis of the structure and the x-y plane is

the transverse plane, with the x-axis parallel to the plates.

The transverse field components E (x,y, ,s) and H (x,y,i,s) in the
-t

Laplace transform domain (i.e., s, ; domain) are related to the longitudinal

field components, E (x,y,c,s) and Hz(x,y,?,s) , via (ref. 2)

- E-(xy s) - S~P v VHz (x,Y, C,s)
Et(x~y, ,s) - p-2VtHz(xyC,s) + S ×p V EtEz(X (xyCs)

tz0 t z

2 22 2
where the factor exp(Cz + st) has been suppressed, p 2 /c 4. , c is the

vacuum speed of light and Vt is the gradient in the transverse direction.

From equation 1, it is obvious that the fields can always be decomposed

into two parts, the T4 fields with Hz -0 and the TE fields with Ez  0. Each

part will be discussed separately in the sequel.

1. TM FIELDS

As has been discussed above, a knowledge of E is sufficient for thez

determination of the TM field distributions. From reference 2, E z(X,y,s)

is given by

Ez (X,y,s) - G(x,y,x',h;p)f(x',h)dx' + G(x,y,x',-h;p)f(x',-h)dx'

-W -W

G(x,y,x',y';) - ( x-') 2 + (yy')2  (2)

f(x,±h) lim LE (x,th+e,Cs) - E (x,±h-e,;,s)
c-O(y z ay z

6
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Figure 2. Two, Finitely Wide and Infinitely Long Parallel Plates.
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where K is the modified Bessel function of the second kind and f(x,±h)

satisfy the following set of integral equations

wT. w

G~x,hx',h;p)f(x',h)dx' + G~x,hx',-h;p)f(x',-h)dx' - ct(x,h)

G(x,-h,x',h;p)f(x',h)dx' + G G(x, -h, x', -h; p) f(x', -h)dx' -a(x, -h)

-w -W

for lxi j w, with ct(x,±h) E - E (x,±h,;,s) being the incident longitudinal

electric fields at the plates.z

2. TE FIELDS

The TE field distributions can be derived completely from H (x~y9rCs)

which is given by the following formula 
(ref. 2) z

sp 0 H z(x~y, 0s) = 52Y (x-,x,' ) xh

(4a)

- 12 (x,y,x',y' ;p)g(x,-h)dxI]'-

where g(x,±h) are defined by

(stio)f tg(x,±h) - lim(H z(x,±h +e,C,s) - H z (x,±h- c_, ,s)) (4b)

and satisfy the following set of differential-integral equations

(,2 2G(x,h,x',h;p)g(x',h)dx' + f G(x,hx,-h;p)g(x?,-h)dxt)

- 8x,h), for lXIi <w(5

dx 2 pG(x,-h,x',h;p)g(x',h)dx' + f-W G(x,-h,xI,-h;p)g(x',h)dx)

O (x,-h), for lX i w

8



with 8(x,±h) = p2On (x,±h,r,s) + 3EinC(x,±h,;,s)/ax being the source terms.z

Although equations 3 and 5 look extremely complicated, they can be

simplified by observing that for most parallel-plate simulators the source

terms on the right-hand sides of equations 3 and 5 satisfy the following

conditions

a(x,h) - a(x,-h) - c(-x,h) = -e (x)
(6)

a(xh) - (x,-h)- -(-xh) -7 0 (x)

Accordingly, one has

f(x,h) = - f(x,-h) f(-x,h) f-ex)

for the TM fields, and

g(x,h) - g(x,-h) - g(-x,h) = g-(x)

-e -o fe -o

for the TE fields. The superscript "-" in a , B , , g is used to

indicate that all these functions a, 8, f, g are antisymmetric with respect

to y, while the superscript "e" or "o" is used to indicate that the functions

are either even or odd functions of x. Under the above conditions of equation 6,

the two equations of either integral equation set 3 or 5 become identical.

In the following sections, the simplified equations will be used to

investigate the properties of the higher-order modes and the continuous

spectrum of the two-parallel-plate guiding structure.



SECTION III

MATRIX-EQUATION FORMULATION FOR THE TM FIELDS

In this section, the integral equations given by equation 3 for the TM

fields will be transformed into matrix equations by expanding the unknown

functions in terms of Chebyshev polynomials.

On account of the source condition of equation 6 the coupled integral

equations 3 are reduced to a single integral equation

f(G(x,h,xh;p) - G(x,hx',-h;p)) f(x')dx' a e(x), xi w (7)

It is easy to see that the kernel of the integral equation 7 has a loga-

rithmic singularity. After separating out the singular term and normalizing

the variables in the following manner

x = w, x' =wE'
(8)

p = y/w, h =wH

the integral equation 7 becomes

i1 n( ) lf-('d&'

27 lM(9-:';y) -N(9-';_ - e ( ')dt '  - (0, for < 1

-1

where

MC -&'; y) - -LK (y+ Z

Here, both M and N are regular functions of -

10
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To facilitate the numerical solution of the integral equation 9, it

is desirable to transform it into a Fredholm integral equation of the
second kind. To do this, Carleman's formula for integral equations with

logarithmic kernels is used to obtain (ref. 8)

f-a(E) + (K( , ';y) - L( , ';y)) f-e( ')d, ' S-e(E), kI <1 (10)

where

2 M("- ';y) d&"

/l; - &1-2 -n2  1

+ 2 41 /'("-. ' ;)1/- ,2

mC s-e( ) = 2 Nl -(F,,) d'" )

2 -

ir/1 Tin 2 -1 / -1 '7
+ 2 ll - d l

-le

Here, f denotes the principal-value integral and the prime in M', N', ae
denotes differentiation with respect to the first argument.

The integral equation 10 can now be reduced to a set of algebraic

equations suitable for numerical computation. The mathematical properties

u11



of K(4,4';y), L( , ';y) and S -e together with the edge conditions and

symmetry properties of f-e( ) suggest the expansion

fe - f-eT W
f-e( )~ ~ = ife2n()i)

2 n O

where T2n(E) are Chebyshev polynomials of the first kind. Then, with the aid

of the orthogonality of the Chebyshev polynomials, the integral equation 10

is transformed to the following set of algebraic equations

Ce + I K C - (12)

where

e  2 I 1l K(E'E';y)T2n( )T2m
( ')

Ke _ d 'dg
nm we

n tj-1 -l7

Le _2 2n 2m_______

s-e 2 -e
2 s-e (&)T 2n()dE

and

(2, n -0

n
1, n 00

Or, in matrix form

6 + Ke - e~ [f-e] -se] (13)

where 6 is the Kronecker delta, which is zero when n is not equal to m

and unity when n equals m, and [rn] is a matrix whose elements are rnm"

12
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Both K and Le are complicated triple integrals. They can be

simplified by first integrating over C and then by making the change of

variables "- ' - 2n and E"+ ' Zn', to get

M(2n;y)G (n)dn n-0

Ke a

f M' (2n;y)F (n)dn n 1 1 (

(14)

1t

8 N(2n;)Ge (n)dn n-0
7r n 2 f m

Le

- f N'(2n;y)F (n)dn n > 1

where

en 1- Inj T2m(n' - T) + T2m(n' + n)

a f /l(n+)2( (vn) 2) *

(15)

1n-)" ,-In (1- (r' +n 2)U2 n-l(' +n)T2m(' -n)I1 r A (n., + ,o2 )(,_- (,.,, -02)

and U (n) is the Chebyshev polynomial of the second kind. By using the expli-
n

cit formulas for the Chebyshev polynomials in the integrals of equation 15,

Ge (nh) and Fe (n) are further transformed into sums of complete elliptic
m n
integrals which are more suitable for numerical computation, viz.,

Ge (r) I I tmkb i(O,2k)n k~Dj(n)
k-O J-O

F;(n) I I u-t Mk (b'(21-1, 2k)- 2k)) x (16)

k-O +X- I - 0
x 21 2k- ID (n) - n bk+(2+l, 2k)D+k(n)

13



where

(-I)fl (n+ 2A- 1 22X-1nat (E- (n - 0 ) (21 - U

k (m+ k-1)!m 22k t
trk (m- k) I (2k) ' o

kitbj k, )= 2 ('l) t i-2j kME!
b i (k~t) i! (k - 1) 1 (2j -i) I(t + i- 2J)!1

1- {maxO,2j- f 4 2 - m{k.2j}

and the functions D (n) are determined from the following recursion formulas

D (ni) -4 "1 (1+n 2)D (ni) 1 1 -n2DnJ+22 + 3 J+l 2j + 3

D 1(r) - 2(l +n) JF(C1- r/(l +n)) - E(C -n)/(l + ))l (17)

Do(n) - 27((l -n)/(+n))/(l+n)

Here, F(n) and E(n) are complete elliptic integrals

F() w/2 (l-n 2 sn 2 )-d¢

E(rj) I w (I- n2sin2 ,)d,
0

The solution of the matrix equation 13 is simply given by

[fe- e + 1~- 1 L 'S-e] (18)

Insertion of this solution into equations 11, 2 and 1 gives the Laplace

transform domain TM fields.

14



in the next two sections certain important properties of the TM fields

will be discussed by studying the singularities of equation 2 in the

complex C-plane at a fixed s - w.

15



SECTION IV

PROPAGATION CONSTANTS AND FIELD DISTRIBUTIONS OF DISCRETE TM MODES

In the previous sections, the formulas required to calculate the TM

fields of two parallel-plates are obtained. At a given frequency w, the

field distributions are calculated from the inverse Laplace transform

integrals

E(x,y,z,Jw) 1 E(x,y, ,Jw)

__ L C _

2nj( e Zd (19)

H(x,y,z,Jw) ,J)

where C is the path of integration in the complex 4-plane shown in figure 3

and E(x,y,Cjw) and H(x,y,;,Jw) are given by equations 1 and 2. An examina-

tion of equation 2 shows that in the complex c-plane, there are branch points

at c - ± jw and poles at C where det [6nm + ke-Lm ]. 0. For the

branch cuts shown in figure 3, the contour C can be deformed to the left

half-plane for field points at z > 0 and sources at z < 0. The contour

integral along C is thus reduced to the integral along the branch cut B_

(the so-called continuous spectrum contribution) plus the residues at the

poles ,(the so-called modal fields). The reason why two indices are

assigned to k, £will become clear later when numerical results are obtained.

Each modal field is required to be outgoing in the transverse direction

and decaying in the +z direction. Thus, in the branch shown in figure 3, the

poles can exist only in the region where -w/c < Im(4) < 0 and Re(C) < 0.

It is also observed that , have negative real parts, so that the modal

field distributions increase indefinitely in the transverse direction.

Hence, the branch shown in figure 3 is appropriate only when the field

points are close to the plates. In the remaining part of this section, the

propagation constants and field distributions of the TM modes will be

discussed, while an estimation of the continuous-spectrum contribution will

be relegated to the next section.

To calculate the propagation constants of the TM modes, one has to

find first from the equation det 6n+ K - Le -0. With these

16
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Pk,1 values (the so-called transverse propagation constants), the corresponding

longitudinal propagation constants Ck,Z are simply given by

k2 2 2 (20)

When H - h/w >> 1, i.e., the plates are extremely narrow, there exist

possible pki" for which l'ky l - IPkZl « 1 and det[6 + K - L]0.

Actually, under the condition l «ktl << 1, one can show that the

satisfy

detr6 + K Le. :de [6 +6a 6 (K e ~LCl
I L J Mam no mo 00 00J

21 + (9n2- in(r k,) 0o(2-k,H)) /in2 u 0 (21)

where r 1.781 is the exponent of Euler's constant. Equation 21 is the

same as that obtained in reference 2, where its solutions are also given.

When the width of the plates is comparable to their separation, which

is the case of interest here where H - 1,2,3, one must resort to numerical

methods to solve the equation det [6m + KL  - Le] - 0 for the transverse

propagation constants Pk, The method selected is first to locate the

approximate positions of the zeros of the determinant from the constant-

magnitude contours in the complex p-plane. Then these approximate positions

are used as the starting points for the Newton-Raphson method, used to

search for more accurate solutions for the transverse propagation constants

P k," It is found that three terms in the expansion 11 for f-e () are

sufficient to obtain resonably accurate transverse propagation constants

of the first several modes for H > 1. For each transverse propagation

constant the -e are then determined within a multiplicative constant
ttPk,' n -

from the homogeneous equation of equation 13. These f values can in turn

be used in equations 1, 2 and 11 to calculate the corresponding modal field

distributions.

18



The transverse propagation constants pk,t of the first several TM

modes for H - 1,2,3 calculated by the above described approach with the

aid of a CDC 6600/7600 computer are tabulated in table 1. The

values as functions of w for the lowest TM modes with k 0,1 and Z- l,2

are plotted in figures 4, 5 and 6. Four curves of pok, k - 1,2,3,4 are

also presented in figure 7 for H-values ranging from 50 to about 2. The

numerical results of the modal field distributions for the 14, modes

with k- 0,1, Z- 1,2 are given in figures 8 through 19. The field distribu-

tions are plotted in terms of constant-value contours of the real parts,

imaginary parts and magnitudes of the normalized field components.

From the field distribution plots of the TMk, modes, especially the

modes with Z > k, it is observed that in the working volume of the simulator

(i.e., x/w, y/h < 1) the fields vary almost sinusoidally as functions of x

and y with periods of 2w/k and 2h/1 respectively. The indices kZ used in

the TMkL modes thus characterize the field variations in the xy directions;

and the use of two indices is justified. In this report, results are given

only for k -0 and 1. It is believed that if one goes even farther away from

the imaginary axis, more TMZ modes can be found for k > 2. However, for

the modes with k > 2, the corresponding longitudinal propagation constants

Sk,l will have decay constants so large that those modes become less

important.

19



Table 1

TRANSVERSE PROPAGATION CONSTANTS OF TM MODES

h/v k-O k-i1

1 -0.1274 3.2879 -1.5701 1.1930

2 -0.0590 6.3890 -0.9827 4.3512

3 -0.0353 9.5060 -0.5034 7.1986

4 -0.0245 12.6321 -0.2935 10.1311

1 -0.1834 1.6686 -1.2325 0.7914

2 -0.1260 3.2448 -1.1963 2.2510

3 -0.0778 4.8067 -0.9098 3.9028

4 -0.0575 6.3662 -0.6898 5.4269

1 -0.1779 1.0974 -1.0351 0.5888

2 -0.1299 2.1721 -0.9925 1.4961

3 -0.1006 3.2207 -0.9207 2.5827

4 -0.0814 4.2662 -0.7896 3.6733

20
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Figure 4. Frequency Variation of Longitudinal Propagation Constants

;kzof Higher-Order TM Modes for k -0,1, Z -1,2 when h/wl-.
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Figure 5. Frequency variation of Longitudinal Propagation Constants

~k,Z of Higher-Order TM Modes for k -0,1, 1- 1,2, when

h/v 2.
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Figure 6. Frequency Variation of Longitudinal Propagation Constants

ck, of Higher-Order TM Modes for k =0,1, Z -1,2 when

h/w -3.
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Figure 7. The Normalized Transverse Propagation Constants Po,,w as

Functions of h/w for Z~ = 1,2,3,4.
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Figure 8a. Constant Value Contours for Normalized Field Component ReCEZ/w)

of the TM0 1 Mode when h/w 1. The Fields are Normalized so

that Ip 1/171412 +TE~fm I at x -y -0. Broken Lines are

for Negative Values.
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Figure 8c. Constant Value Contours for Normalized Field Component IE z/vI,

of the TM4 Mode when h/v 1 . The Fields are Normalized

so that IP2/ /EI 2'+JEI y 1 at x-y-O.
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Figure 8e. constant value Contours f or Normalized Field component

.41m(P 2E X/) Im(P~ 2- / )2.(Im(P2 H y/se 0)) 2+ (Im(p2H x/se ))2

of the TMO Mode when h/w 1. The Fields are Normalized

so that ji0/ 12 + E y 2  1 i at xy_ 0 .
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Figure 8f. Constant Value Contours for Normalized Field Component

/;1 .12+ 7IE y 12 Ip2(s o)1IV4 H T IHI 2 of the TM0,1
Mode when h/w - 1. The Fields are Normalized so that

IP2 / j Ifl I .~EJY 1 at x-y-0.
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Figure 9b. Constant Value Contours for Normalized Field Component

Im(Ez 1w) of the TM0,2 Mode when h/w - 1. The Fields are

Normalized so that pW- 1 at x- y-0.

Broken Lines are for Negative Values.
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Figure 9d. Constant Value Contours for Normalized Field Component

v/(Re~p 2E / C))2 + R (2EC Re(p2 H ylsc )) 2+ (Re(p2 H X/sc0))2

of the TM 02Mode when h/v 1. The Fields are Normalized so

that p2 /JJ I 7+IE y 1 at x'uyuO.
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Figure 9f. Constant Value Contours for Normalized Field Component

[p / J I IEX Y41 2 . p ( S ) 1 1 1 +IHY of the TMO,2
Mode when h/w 1 .- The Fields are Normalized so that

2pW 12 1 12 1at x-y-0.
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Figure 10a. Constant Value Contours for Normalized Field Component

Re(E~ Iv/) of the TM,,, Mode when hlw =21. The Fields are

Normalized so that Ip/~ W IE1 +JE Y1 1 at x -y -.I Broken Lines are for Negative Values.
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Figure l0b. Constant Value Contours for Normalized Field Component Im(EZ/w)

of the TM1 1l Mode -when h/w - 1. The Fields are Normalized

so that Ip2I J/i7T7EY 1 at x -y-O0. Broken Lines

are for Negative Values.
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Figure i~e. Constant Value Contours for Normalized Field Component

/(IM (-pE X/ 0) + (I (p E y/0)2 . /(IM(p H y /e ))2+(I( H. m x/se))0
of the TM~ Mode when h/v - 1. The Fields are Normalized so

that IJp 2/C 7,Eji4-iEy _ 1 at x.yinO.
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Figure l0f. Constant Value Contours for Normalized Field Component

Ip2 1/ -.2 + E 2 . p2 (S -l 1/, 2 + H 2 o h ~ ,

Mode when h/w - 1. The Fields are Normalized so that

/c /IXI JEY1 1 at xinyiO.
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Figure lib. constant value Contours for Normalized Field Component

Im(E~ Z w) of the TM1 2 Mode when h/w - 1. The Fields are

2 2 121atxy
Normalized so that Ip /IJE +IEi -1ay-0
Broken Lines are for Negative Values.
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Figure 11c. Constant Value Contours for Normalized Field Component k/wI
of the TM1 2 Mode when h/w - 1. The Fields are Normalized so

that P iJ/ EX J E j2 1 at x -y -0.
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Figure 11d. Constant Value Contours for Normalized Field Component

/(Re(p'E /0) 2 +(Re(p 2E Y/0 2 .c/(Re (1)2H y/sc)) 2 +(Re(p 2H/cD)2

of the TM1 2 Mode when h/w 1 . The Fields are Normalized so

that [pZ/kI/IEXI +IEYI = t '
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Figure lle. Constant Value Contours for Normalized Field Component

/(u(pE/0))+(Im~p E y/4))2 4 m(P2 H /s%)) 2 +Imp 2 H /SE 0) 2

of the TM 12Mode when h/v - 1. The Fields are Normalized soI that2 .P~ VIEiI 1 at xnyO.
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Figure 11f. Constant Value Contours for Normalized Field Comiponent

Ip 2 /I %E1 + IE y12~ _ P(c0-1IIX1 2 of the T

Mode when h/w - 1. The Fields are Normalized so that

p 2 /;IrIE 12 +iE 12  1 at xinyfo.

48



2

1.5.1.

------------
0

0.5 Polo

0
0 0. .

X/W

Figure 12.a. Constant Value Contours for Normalized Field Component

Re(Ez /w) of the TM0 1, Mode when h/w - 2. The Fields are

Normalized so that Ip 2 /11E/i 12+IE7Y12- 1 at x- y- 0.I Broken Lines are for Negative Values.
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Figure 12d. Constant Value Contours for Normalized Field Component

/(R~ 2 E /)2 +(e2 Ey/)2= /R P :0 2 +R~ 2 2 s )

of the TM% Mode when h/w - 2. The Fields are Normalized so

that Ip,4 N Exf 2+JE 21 I at x~ y 0.
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Figure I~e. Constant Value Contours for Normalized Field Component

/ 2 22 2 2 2 2 2
/(I~p E /0)2 (lmp2E y/0)) 2.(Im(p 2H / se ))2+(tm(p H /se ))

of the TM Mode when h/v 2. The Fields are Normalized so

2ha 0p/1 '1~2 + 2 ati
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Figure 12f. Constant Value Contours for Normalized Field Component

2 : 12 + I2(2 2
[p /;I, +IE~ 1 E_(sc 0-)'I IHJ+ 1HI of the TM 1

Mode when h/w - 2. The Fields are Normalized so that

IP/IE I+IE y 1 at x-syin.
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Figure 13f. Constant Value Contours for Normalized Field Component

Ip2 ;IIEx 2 + E 12 _I2(s )-l ,x+I1 2 2 fteT ,

Mode when h/w - 2. The Fields are Normalized so that

p N I/ Ef2+1 1 at x-yn.
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Figure 14b. Constant Value Contours for Normalized Field Component

Im(E /w) of the TM 1, Mode when h/w - 2. The Fields are
Normalized so that _p _/_ _2+_ _ 1 2 - 1 at _my=-0.

Broken Lines are for Negative Values.
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Figure 14c. constant Value contours for Normalized Field Component IE z/wj

of the TM, Mode when h/v 2. The Fields are Normalized

so that fp2/ JJEX EI2 +IEy 12 1 at x -YO-.

63



2

1.5 -2

055

0

Figure 14d. Constant Value Contours for Normalized Field Component

t(R~p' W)2 +(Re(p 2E /0) 2 M/(R(2H Is ) 2 (Rp2H 2s

o~f the TM1 1Mode when h/v - 2. The Fields are Normalized so

Fthat l2 li IEXI+E, 12 1 at x -y -0.
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Figure 1.4a. Constant Value Contours for Normalized Field Component

/(lM(P2 E /0) 2+(Ii(p 2E/0) 2_ /Im(p2H /sc )) 2+ (Im(p2 H /sc ))xy y 0 x 0
of the TM1  Mode when h/w -2. The Fields are Normalized so
that j2 / i.x+J at x= .
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Figure 14f. Constant Value Contours for Normalized Field Component

2/ ~ 1EI+E2 = I2(s-lj 1H 2 + 2 o
PSIiI+J /! HI o the ll

Mode when h/w - 2. The Fields are Normalized so that
p2 /c/E12 +E 2 1at xy0.
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Figure l5c. Constant Value Contours for Normalized Field Component JEZ fwI
of the TM1 2 Mode -when h/w -2. The Fields are Normalized

so that lPZ/f/Ii_ 1xI+ iEI -1 at xinyiO.
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Figure 15d. Constant Value Contours for Normalized Field Component

/ (2 2 2 2/ R~2Hs 2 2Hx )2

of the TM, 2 Mode when h/v - 2. The Fields are Normalized so
that Ip 2 / 1IE '12 +I IE y2 _ I at xinyiO.
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Figure 15e. Constant Value Contours for Normalized Field Component

,km(p 2E/) I+ (m(P 2 E /0 2 - /(I(P1 / )? +I( 2H /))

of the TM1 2 Mode when h/v = 2. The Fields are Normalized so
2' 12+ 2.that 1P /0j JEXJ JE Y I at x-y- 0.
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Figure 15f. Constant Value Contours for Normalized Field Component

I 2i h i /;/ExI J 2 _IP2(sc )'li/,H1 2 + IH Y2 of the TM1,

Mode when h/v - 2. The Fields are Normalized so that
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Figure l6a. Constant Value Contours for Normalized Field Component

Re(Ez/w) of the TMO,1 Mode when h/v 3. The Fields are

Normalized so that Ip /CI/IE_1 2+ IE~I 1a -

Broken Lines are for Negative Values.
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Figure 16c. Constant Value Contours for Normalized Field Component IE z/wj
of the TMO 1 Mode when h/w - 3. The Fields are Normalized so

that p x12+J 2-1 at x-yO.
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Figure 16d. Constant Value Contours for Normalized Field Component

I e~2 E/)2 (Rp2 Ey/)2 -/R~~,y/E0)2 (Rp2H/e) 2

of the TM0 1 Mode when h/w - 3. The Fields are Normalized so

that IP /dIIx IEy Y 1I at x -y -.
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Figure 16e. Constant Value Contours for Normalized Field Component

v'(Im(p2EX/4)) 2+ (Im(p E Y/0) 2 (Im(p2H Y/sc0)) 2+ (Im(pH H/SE 0)2Iof the TO1Mode when h/w - 3. The Fields are Normalized so
that Ip N/ EXI +IEVI 2 1 at xy0.
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Figure 16f. Constaat Value Contours for Normalized Field Component

IPp 2N fE +Ey1= 2(sE 0) -1 /IH i2+IH Y of the TM '

,Mode when h/w - 3. The Fields are Normalized so that

I2 /c ,x2 +E 12=.1 at x-yin .
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Figure 17a. Constant Value Contours for Normalized Field Component

ReCE Z1w) of the TM 02Mode when h/w - 3. The Fields are

Normalized so that Ip 2 / I/ IEX 2 +JE 12 - 1 at x=y =0.I Broken Lines are for Negative Values.
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Figure 17c. Constant Value Contours for Normalized Field Component JE z/w1

of te T0,2 Mode when h/w =3. The Fields are Normalized
so that jp/JJ J 2 = I at x=Y-0.
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Figure 17f. Constant Value Contours for Normalized Field Component

p2 /;I/ xE1 2 +J 2 _I2(s 01IH 2 + IHy1 of the TM0,2
Mode when h/w -3. The Fields are Normalized so that

p N~ '1~2 + IEI12 =1 at x-yn.
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Figure 18a. Constant Value Contours for Normalized Field Component

Re(E z w) of the TMI Mode when h/w - 3. The Fields are
TM1,1Normalized so that Ip2/I/IE x 2 + E 1 -1 at x-y-=0.

Broken Lines are for Negative Values.
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Figure 18b. Constant Value Contours for Normalized Field Component

Im(Ez 1w) of the TM1,1 Mode when h/w = 3. The Fields are

Normalized so that 1p 2 /;1/1E x I' +E y12 - 1 at x y-0 .

Broken Lines are for Negative Values.
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Figure 18d. Constant Value Contours for Normalized Field Component

(Re(p EX/4)) 2+(Re(p2 E y/Mj 2. (Re(p2H /5%o))2 +(Re(p2 H so)

of the TM, Mode when h/w - 3. The Fields are Normalized so

that p2, I/EfZ+E y12=1 at x=y 0.
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Figure 18e. Constant Value Contours for Normalized Field Component

(im(p 2EX/) 2 +(Im(p 2E y/0)) I= /Im(p2 H / se ))' +(Im(p 2H / se 0))2

of the TM, Mode when h/w - 3. The Fields are Normalized so

that Ip /ci/iEXI +E~ 89 at x -yO-.
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Figure 18f. Constant Value Contours for Normalized Field Component

2 12I~I+I~ 1 2 (sV1 I 2+iH 2 of teT 1

Mode when h/w - 3. The Fields are Normalized so that

f2/ ~ IE 2 I 2 
=1 at x-y0.
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Figure 19a. Constant Value Contours for Normalized Field Component

jRe(E 1 w) of the TM 12Mode when h/w - 3. The Fields are

Normalized so that Ip 2 /ItE 2 + E y12 _1 at x=y=0.
Broken Lines are for Negative Values.
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Figure 19f. Constant Value Contours for Normalized Field Component

Ip 2  /IIE1I2+IE y 2______ IP2(s o)-li/fl1 2+11&,12 of the T41,2
Mode when h/v - 3.* The Fields are Normalized so that

Ip 2 /cI'E 1
2  Ej 1 at zaymO.
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SECTION V

CONTINUOUS SPECTRUM CONTRIBUTION

In this section, an asymptotic estimation of the continuous spectrum

contribution to the TM fields at a given w will be presented.

From equations 2 and 19, the continuous spectrum contribution to E2

for a fixed w is given by

x f-e(x'/w)e Zdxdr (22)

where p - i/C2 + ,2/c2, B is the contour shown in figure 3, and f-e( )

is calculated from equations 11 and 18. Along B, it can be shown that

the p-values above and below the branch cut are related by p(above) -

e Jp(below). Thus, with the variable change from ; to - jW/c - K,

equation 22 becomes

Ec (xz1 -. J* lZ/C j t  KZ Ize ('w
E 4xY9 W) J x Ke -WW

-w 0o (23)

x I IoP (p/"xx) 2 +(y -h) 2 - Io(P(X - '2 +(y +h)2)

where 10 is the modified Bessel function of the first kind and the parameter
is given by p - - J2+2jKW/C.-

The asymptotic behavior for large z of the continuous spectrum contri-

bution EC(xyzJw) can now be estimated. Due to the exponential term

exp(-KZ), it is clear that the c-integral in equation 23 comes mainly

from the rebyon where 1 > KZ > . For field points in the working volume

of the simulator, the arguments of the Bessel functions are small for

1 !.Kz > O, provided that z >> w(h 2+w 2)/c and z2 >> (h2 +W 2). The small-
argument expansion can be applied to the Bessel functions to get (ref. 9)
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I0(,. ,12 + 0,_h)2 ) ,o(P/(_X,)2 + (P+h) 2 )
I (K2 + 2j, w/c)yh (24)

For the term f-e (E), one obtains, under the same conditions, from equations

i1 and LS

fe () 6 + k - Le [Se

F I n 1 4h

1 T(E)]T_ [a + 6on. 1 (in2 -K (2ph))l [ 5e

L2TZ UM o Z pw 0 mJ

1 + a 1 + on n - T2W (25)

where [T 2n(t)] T is the transpose of the column vector [T 2 n(E)] (i.e., a row

vector with T2n() as the elements).

Combining equations 23, 24 and 25, one has

Ec wh jwz/c + 1 n Ah
z(x~y~z9Jw) 4-ir L 1 0no 1n N)

I 1  T2n(') e KZ 2 (26)

for z >>w(h 2+ w2)/c and z2 >> h2 + W2

Now, if one assumes that S-0 has no singularities close to the branch cut,

which is generally true, equation 26 immediately becomes

RE(X~y~z~jW) l+ -in A) S-e o 1(+ z) (27)z 2 n L2 IN 03 c
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From equation 27, it is seen that the continuous spectrum contribution

to Ez(xy,z,jw) decays as z when the wave propagates along the +z direc-

tion. The above asymptotic estimation can also be applied to other field

components to obtain similar results. Hence, within the region where
2 yhwc 2  2 2 2 22 2z >> yhwo/c, (h +w ), u (h +w )/c , the continuous spectrum contribution

is negligible compared to the TEM mode contribution.
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APPENDIX

MATRIX-EQUATION FORMULATION FOR THE TE FIELDS

In this appendix, the matrix equation for the TE fields of the two

parallel-plates will be formulated. The procedure will be the same as

that used for the TM fields given in section III.

Under the source condition 6, the coupled differential-integral

equations 5 are simplified to the single equation

( - p2 ) fG(x,h,xr,h;p) - G(x,h,x',-h;p) 9 g

0 W for IxI < w (Al)

To solve equation Al, one first integrates the equation to yield the

following integral equation

f jG(xh 'x',h;p) - G(xh,x',-h;p)l g-°(x')dx'

-w

SB- 0 sinh(px) + F (2p)-Isinh(plx-xl)B-O(x)dx'  for lxi <_w (A2)

-w

where the integration constant B-0 will be determined from the edge conditions.

Equation A2 has the same form as equation 7. Hence, by following the

same procedure used to solve equation 7, one can transform equation A2 into

a Fredholm integral equation of the second kind given by

- + (K(4,&';y) - . , - d9,

-yB f cosh(.rW )4~ + 2 fl
;:" -l -Il _ 2j_ -' d

for 1.1 (A3)
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where the variables are normalized according to equation 8, K(&,4';y)

and L( , ';y) are defined in equation 10, and

v 0 (2y)-lsinh (ylE- &'I) a-°( ')d '

The unknown quantities in equation A3 are g-(E) and B
- . By

applying the edge conditions, one can derive a relationship between them.

The edge and symmetry conditions for g-0 (C) suggest the following expansion

g-o(e) - E2u () (A4)

m O

After using the expansion A4 in equation A3 it is observed that both

left-hand and right-hand sides of equation A3 contain the term v/i-7

which is the dominant term when g - ±1. By letting g - ±1, one can equate

the left-hand and right-hand coefficients of the term //7- and thus

obtain

-yB 0  cosh(yE') d ' + v 0 ( ')

Or, after simplification

-o ago - -O (A)
M=0 amgm edge

where

a0 
- 2(yI(y))- f1 (M'2;y)- N'(2n;y))Ro(n)dn

0 - in,I _ (n', _ {o2 )U 2 m.l'-n) - r)

f1+II (n, 1),2)(1 (n,_)2)
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-0 ?Y (~Y)~f f' 0 Wo~ )(U1- 2) d~l

-1-

Haigdetried B- in terms of g ,the matrix equation for

equation A3, it is easy to see that the equation can be cast into the

following form

g9 M~ + &2f {p( X~;Y) - (V;jgoE) '

/1A (B-OHOC + Vo'( )) (A6)

where

H~ 0 W 2y coshCTE) 1- g - 1 .~.-d~'

cosh(yV)

V-0 l M'C 1 -C';y) - d9-'~'

-l

By inserting the expansion A into equation A6 and using the orthog-

onality of the Chebyshev polynomials, one finally obtains the desired

algebraic equations for g - given by

g0 (P0 H 0a 0 )gO -0 - 0  H0 + V 0  (A7)
gnm n M ;m Um m edge n n
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Or, in matrix form,

6 + Po 0 - loao g0 V-0H 0 +V-0(8

where

p 02 f /17 7U (t)/*7 C 2 U2 ~C' X

-- 16f (M'(ari;y) -N'(2n;y))FO ()d1

0

Ho 2 11 U~~()A 9d

8 -n/2 cosh(y cos O)cos(2(n +1)0)do

0

-o 2 1- T -

- fv0(o'Q)T2 2 W~)(1- E) d~l

F 0 ) -~ (1 -(n' 1))U 2m+1i(n' - OlT 2n+2(n+n dni

k- u0 2. 0i n k b (b (2k, 2 1.-I-) 2 n b (2k , 2 Z.+3))

x 1 2 +k iD (n) b (2k, 22 +3)nD ~(n)
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0 (lm- I (m+Z+l)t 2 2k+1

= (1 n-k+l (n+k)!(n+l)
nk (n -k+l)!(2k)!

and b CkZ), D (ni) are given in equations 16 and 17; vedge and a 0are given

in equation A5 with

R0 0 (2 2k2+ - 2j + .(I)

T) b Z~1(0, 22A-3)D Z 1 (W )

The solution of equation A8 is simply given by

-0 [ +Po -0 -Ha 0 V-0 Hol (&9)nz rm Qm n ede]

This solution can be used in equations A4, 4 and 2 to calculate the TEfields

of the two-parallel-plate simulator,
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